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Abstract 
In this paper we present some theoretical results on two forms of multi-point 
crossover: «-point crossover and uniform crossover. This analysis extends 
the work from De Jong's thesis, which dealt with disruption of «-point 
crossover on 2nd order hyperplanes. We present various extensions to this 
theory, including 1) an analysis of the disruption of «-point crossover on kth. 
order hyperplanes; 2) the computation of tighter bounds on the disruption 
caused by «-point crossover, by handling cases where parents share critical 
allele values; and 3) an analysis of the disruption caused by uniform 
crossover on kth order hyperplanes. The implications of these results on 
implementation issues and performance are discussed, and several directions 
for further research are suggested. 
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1   Introduction 

One of the unique aspects of the work involving genetic algorithms (GAs) is the 
important role that recombination plays in the design and implementation of robust 
adaptive systems. In most GAs, individuals are represented by fixed-length strings and 
recombination is implemented by means of a crossover operator which operates on pairs 
of individuals (parents) to produce new strings (offspring) by exchanging segments from 
the parents' strings. Traditionally, the number of crossover points (which determines 
how many segments are exchanged) has been fixed at a very low constant value of 1 or 
2. Support for this decision came from early work of both a theoretical and empirical 
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nature [Holland75, DeJong75]. 
However, there continue to be indications of an empirical nature that there are situations 
in which having a higher number of crossover points is beneficial  [Syswerda89, 
Eschelman89]. Perhaps the most surprising result (from a traditional perspective) is the 
effectiveness on some problems of uniform crossover, an operator which produces on the 
average {LIT) crossings on strings of length L [Syswerda89]. 
The motivation for this paper is to extend the theoretical analysis of the crossover 
operator to include the multi-point variations and provide a better understanding of when 
and how to exploit their power. Specifically, this paper will focus on two forms of 
multi-point crossover: «-point crossover and uniform crossover. 

2   Traditional Analysis 

Holland provided the initial formal analysis of the behavior of GAs by characterizing 
how they biased the makeup of new offspring in response to feedback on the fitness of 
previously generated individuals. By focusing on hyperplane subspaces of L- 
dimensional spaces (i.e., subspaces characterized by hyperplanes of the form "—a—-b- 
-C-"), Holland showed that the expected number of samples (individuals) allocated to a 
particular Alh order hyperplane Hk at time t + 1 is given by: 

m(Hk,t + l)>m(Hk,t) * f—^ * (1 - Pmk - PcPd(Hk)) 

In this expression, / (Hk) is the average fitness of the current samples allocated to Hk,f is 
the average fitness of the current population, Pm is the probability of using the mutation 
operator, Pc is the probability of using the crossover operator, and Pd(Hk) is the 
probability that the crossover operator will be "disruptive" in the sense that the children 
produced will not be members of the same subspace as their parents. 

The usual interpretation of this result is that subspaces with higher than average payoffs 
will be allocated exponentially more trials over time, while those subspaces with below 
average payoffs will be allocated exponentially fewer trials. This assumes that there are 
enough samples to provide reliable estimates of hyperplane fitness, and that the effects of 
crossover and mutation are not too disruptive. Since mutation is typically run at a very 
low rate (e.g., Pm = 0.001), it is generally ignored as a significant source of disruption. 
However, crossover is usually applied at a very high rate (e.g., Pc > 0.6). So, 
considerable attention has been given to estimating Pd, the probability that a particular 
application of crossover will be disruptive. 
To simplify and clarify the analysis, it is generally assumed that individuals are 
represented by fixed-length binary strings of length L, and that crossover points can 
occur with equal probability between any two adjacent bits. For ease of presentation 
these same assumptions will be made for the remainder of this paper. Generalizing the 
results to non-binary fixed-length strings is quite straightforward. Relaxing the other 
assumptions is more difficult. 
Under these assumptions, Holland provided a simple and intuitive analysis of the -_ 
disruption of 1-point crossover: as long as the crossover point does not occur within the _Ac 

defining boundaries of Hk (i.e., in between any of the k fixed defining positions), the 
children produced from parents in Hk will also reside in Hk [Holland75]. Figure 1 
represents this graphically for a 3rd order hyperplane. Note that dx, d2, and d3 represent 
the 3 defining positions of the 3rd order hyperplane, while PI and P2 indicate the two 
parents. 
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Figure 1:   A 3rd Order Hyperplane 

If crossover does occur inside the defining boundaries, disruption may or may not result. 
Disruption will depend on where the crossover point occurs inside the defining 
boundaries and on the alleles that the parents have in common on the k defining 
positions. Hence, Pd can be bounded by the probability that the crossover point will fall 
within the defining boundaries of Hk. Under the assumption of uniformly distributed 
crossover points, this yields: 

dl(Hk) 

where dl(Hk) is the "defining length" of Hk, namely the distance between the first and 
last of the k fixed defining positions of hyperplane Hk. 

This analysis has lead to considerable discussion of the "representational bias" built into 
1-point crossover, namely that crossover is much more disruptive to hyperplanes whose 
defining positions happen to be far apart. It also suggests a plausible role for inversion 
operators capable of effecting a change of representation in which the defining lengths of 
key hyperplanes are shortened. 
De Jong [DeJong75] extended this analysis to n-point crossover by noting that no 
disruption can occur if there are an even number of crossover points (including 0) 
between each of the defining positions of a hyperplane. Hence, we have a bound for the 
disruption of «-point crossover: 

Pd(n, Hk)<\-PKeven(n,Hk) 

where Pk,even( «> Hk ) is defined to be the probability that an even number of the n 
crossover points will fall between each of the k defining positions of hyperplane Hk. De 
Jong [DeJong75] provided an exact expression for PKeven for the special case of 2nd 
order hyperplanes (i.e., k = 2): 

2,even (n, L,LX) 

n 
2 [ Ll  1 2/ \ L-Lx 

■=o 
2/ L L 

n - 2i 



P2eVen(n> L, Lx ) is the probability that an even number of crossover points will fall 
within the 2nd order hyperplane defined by L and Lx. Recall that L is the length of the 
string, while L\ is the defining length of the hyperplane. The second term of the 
summation is the probability of placing an even number of crossover points within the 2 
defining points. The third term is the probability of placing the remaining crossover 
points outside the 2 defining points. Finally, the combinatorial term 2- represents the 

number of ways an even number of points can be drawn from the n crossover points. 

The family of curves generated by P2,eVen provide considerable insight into the change in 
disruptive effects on second order hyperplanes as the number of crossover points is 
increased. Figure 2 plots the curves for binary strings of length L. Notice how the 
curves fall into two distinct families depending on whether the number of crossover 
points is even or odd. Since P2,even guarantees no disruption, we're interested in 
increasing P2,even whenever possible. By going to an even number of crossover points, 
we can reduce the representational bias of crossover, but only at the expense of 
increasing the disruption of the shorter definition length hyperplanes. 
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Figure 2. «-point Crossover Disruption on 2nd Order Hyperplanes 

If we interpret the area above a particular curve as measure of the cumulative disruption 
potential of its associated crossover operator, then these curves suggest that 2-point 
crossover is the best as far as minimizing disruption. These results together with early 
empirical studies were the basis for using 2-point crossover in many of the implemented 
systems. Since then, there have been several additional studies focusing on crossover. 

Bridges  and  Goldberg   [Bridges85]   have  extended   Holland's  analysis   of  1-point 
crossover, deriving tighter bounds on the disruption by taking into account the properties 
of the second parent and gains in samples in Hk due to disruption elsewhere. 

Syswerda [Syswerda89] introduced a "uniform" crossover operator in which P0 specified 
the probability that the allele of any position in an offspring was determined by using the 



allele of the first parent, and 1 - P0 the probability of using the allele of the second 
parent. He provided an initial analysis of the disruptive effects of uniform crossover for 
the case of P0 = 0.5, and compared it with 1 and 2 point crossover. He presented some 
provocative results suggesting that, in spite of higher disruption properties, uniform 
crossover can exhibit better recombination behavior, which can improve empirical 
performance. 
Eschelman, Caruana, and Schaffer [Eschelman89] analyze crossover operators in terms 
of "positional" and "distributional" biases, and present a set of empirical studies 
suggesting that no «-point, shuffle, or uniform crossover operator is universally better 
than the others. 
These results and other empirical studies motivated us to attempt to clarify the effects of 
multi-point crossover by extending the current analysis. In this paper we will present the 
following extensions: 

1) An analysis of the disruption of «-point crossover on Mi order hyperplanes. 

2) The computation of tighter bounds on the disruption caused by «-point crossover, 
by examining the cases in which parents share common alleles on the hyperplane 
defining positions. 

3) An analysis of the disruption caused by uniform crossover on Mi order 
hyperplanes. 

3   Crossover Disruption for Higher Order Hyperplanes 

One possible explanation for the conflicting results on the merits of having more 
crossover points is that De Jong's analysis for the special case of 2nd order hyperplanes 
simply does not extend to higher order hyperplanes. In this section we attempt to resolve 
this issue by generalizing De Jong's results to hyperplanes of arbitrary order. 

As noted earlier, the disruption probability Pd{ «, Hk) of «-point crossover on a Mi 
order hyperplane Hk can be conservatively bounded by 1 -P*,ev«i(w> Hk) where 
Pkewni n> Hk )is the probability that «-point crossover produces only an even number of 
crossover points between each of the defining positions of Hk. 

De Jong's formula for calculating P2<even can be generalized by noting that Pkeven can be 
defined recursively in terms of Pk-\<even- To see tnis> consider how P3,CTe„ can be 
calculated in terms of P2,even- Figure 3 illustrates the approach graphically. 
The probability of «-point crossover generating only an even number of crossover points 
between both dx—d2 and d2—d3 can be calculated by counting the number of ways an 
even number of crossover points can fall in between d\—d3, and for each of these 
possibilities requiring an even number to fall in dx—d2 (a second order calculation 
involving Lx and L2). More formally, we have: 

Pl,even( w> ^> ^1 

n 
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P2,even( 2*, L\, L2) 
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Figure 3. Non-disruptive «-point Crossover 

In general, we have: 

Pk,even(n, L, L], . . . , Lk_\ ) 

n 
2 

n 
2i 

hi. 
L 

2< L-Li 
L = u 

n — 2i 

k-\,even (2i, L\, . . . , Z-jt-1 ) 

Figures 4 and 5 illustrate Pk,even for hyperplanes of order 3 and 5. Each point on the 
graph represents an average over all hyperplanes of a particular defining length. Note 
that, apart from a skewing effect, the curves yield the same interpretation as De Jong's 
earlier curves for 2nd order hyperplanes: 2 point crossover minimizes disruption. So, 
extending the analysis thus far does not help in understanding the potential benefits of 
higher numbers of crossover points (seen in some empirical results). 

4   Tighter Estimates on Disruption Probabilities 

A second explanation for the conflicting results on the merits of a higher number of 
crossover points is that the P^even curves are very weak bounds on Pd. It is possible that 
Pd itself, if analyzable, would yield different results. In this section we attempt to 
resolve this issue by providing tighter estimates on Pd. 

The primary reason for the weakness of the Pk^en bound is that it ignores the fact that 
many of the cases in which an odd number of crossover points fall between hyperplane 
defining positions are not disruptive to the sampling process. This occurs whenever the 
second parent happens to have identical alleles on the hyperplane defining positions 
which are exchanged by "odd" crossovers. (Note that an "odd" crossover occurs when an 
odd number of crossover points falls within 2 adjacent defining positions of the 
hyperplane.) Figure 6 illustrates this in the simple case of 2nd order hyperplanes. Note 
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Figure 4. Pleven on 3rd Order Hyperplanes 
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Figure 5. Pleven on 5th Order Hyperplanes 

that, in this figure, V) and v2 represent the alleles (i.e., binary values) at those defining 
positions. Of the 4 possible combinations of matches on the defining positions of H2, 
only the first (-vi—v2-, -V]—v2-) actually results in a disruption. 
Deriving an expression for the probability that both parents will share common alleles on 
the defining positions of a particular hyperplane is difficult in general because of the 
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Figure 6. Disruption in "Odd" Crossovers 

complexity of the population dynamics. We can, however, get a feeling for the effects of 
shared alleles on disruption by making the following simplifying assumption: the 
probability Peq of two parents sharing an allele is constant across all loci. 

With this assumption we can generalize PKeven to PKs (i.e., the probability of survivrt ) 
by including "odd" crossovers which are not disruptive. The generalization is still 
recursive in form: 

and 

P%s( n, L, Lx ) = X 
i=0 

PKs{n, L, Lu. .., Lk_x ) = 

i=0 L 

hi. 
L 

L-L, 

L-L, 
C 

P/c-i,.X i, L\,. . ., Lk_\ ) 

Notice that we are now summing over all crossover distributions (both even and odd), 
but have added a "correction" factor C at the "bottom" of the recursion to sort out the 
desired cases. C must be defined, then, for each path through the recursion. If each n is 
even at every level in that path, then there are an even number of crossover points 
between each of the defining positions. In this case, we define C to be 1, ensuring that all 
the even cases are counted as before. Suppose, however, that n is odd at some level in a 
path. Then there must be two adjacent defining positions that contain an odd number of 
crossover points. If C were defined to be 0 when this situation occurred, we would have 
exactly the same formulation as P2,eVen and Pk.even- However, we want to include those 
cases where the alleles of the parents on the hyperplane defining positions match in such 
a way that an "odd" crossover will not be disruptive. At the point where the recursion 
"bottoms out", a particular distribution of crossover points is completely specified. This, 
in turn enables one to identify how many of the given hyperplane's defining positions are 
being exchanged by this particular "odd" crossover. If both parents match on these 
positions, no disruption occurs. 



As we saw in Figure 6, this will be the case for 2nd order hyperplanes if the parents 
match on either the first or the second or both defining positions. Hence, setting 

{Pea)2 specifies the proportion of non-disruptive "odd" crossovers. If we C P    + P   ■ 1 eq ~ i eq 
assume that Peq = (15 for example, then C = 0.75. This indicates that 75% of the "odd" 
crossovers are non-disruptive, which agrees with the prior discussion for Figure 6. 

This same observation is true for Mi order hyperplanes. If an "odd" crossover results in 
m of the k defining positions being exchanged, no disruption will occur if: 1) the parents 
match on all m positions being exchanged, or 2) if they match on all k-m positions not 
being exchanged, or 3) they match on all k defining positions. Hence, the general form 
of the correction is: 

C   =   P   m + P o     —     r eq     -r 1 ( 
k-m -P.. 

Figure 7 illustrates this for one particular "odd" crossover on 4th order hyperplanes. 
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Figure 7. Non-disruptive "Odd" Crossover on 4th Order Hyperplanes 

In this case, 

C   =   P     + P K^       —       *   Pfj        '    1   Pt P      4 1
 eq 

If Peq = 0.5, then C = (7/16) reflects the proportion of cases in which this particular 
crossover will not be disruptive. 
Figures 8 and 9 show the effects of counting the non-disruptive "odd" crossovers. Figure 
8 assumes a value of Peq = 0.5, which is likely to hold in the early generations when 
matches are least likely. Figure 9 assumes a value of Peq = 0.75 to get a feeling of the 
effect as the population becomes more homogeneous. Note that in both cases, the 
amount of expected disruption has been significantly reduced and the relative difference 
in disruption among different numbers of crossover points is reduced as well. At the 
same time, note that the curves for the various number of crossover points have held 
their relative position with respect to one another. 

These results help explain the fact that in some empirical studies little or no difference in 
effect is seen by varying the number of crossover points between, say, 1 and 16. It does 
not appear to explain why in some situations more crossover points and, in particular, 
uniform crossover seems to perform significantly better. 



3,J 

1 -, 

0.9- 
0.8- 

0.7- 
0.6- 

0.5- 

0.4- 

0.3- 
0.2- 

0.1 - 

0 — 

1 

-0.9 

-0.8 

0.7 

0.6 

I-0.5 
0.4 

0.3 
I-0.2 

0.1 
0 

L/2 L 

Defining Length 

Figure 8. Pks on 3rd Order Hyperplanes with Peq = 0.5 
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Figure 9. Pks on 3rd Order Hyperplanes with Peq = 0.75 

5   Analyzing Uniform Crossover 

Syswerda [Syswerda89] defined a family of "uniform" crossover operators which is a 
variant of a notion that has been informally experimented with in the past: to produce 
offspring by randomly selecting at each loci the allele of one of the parents. By defining 
P0 to be the probability of using the first parent's allele, offspring can be produced by 



flipping a P0 biased coin at each position. (Other informal studies viewed the process as 
a random walk and defined P0 as the probability of switching over to the other parent. 
The two views are equivalent if and only if P0 = 0.5.) 

A good way of relating uniform crossover to the more traditional «-point crossover is to 
think of uniform crossover as generating a mask of 0s and Is, indicating which parent's 
allele is to be used at each position. As we scan the mask from left to right, a switch 
from 0 to 1 or from 1 to 0 represents a crossover point. For example, the mask 0011100 
defines a 2-point crossover operation. If P0 = 0.5, all masks are equally likely. If we 
examine the «-point crossover operations defined by this set of masks, we see 
immediately that they are binomially distributed around ((L-l)/2). For example, the 
set of all 4-bit masks defines: 

2 0-point crosses 
6 1-point crosses 
6 2-point crosses 
2 3-point crosses 

If P0 ± 0.5, the masks are no longer uniformly distributed, but contain on the average 
longer runs of 0s or Is. From the point of view of «-point crossover, the effect is to skew 
the binomial distribution toward 0. 
We are now in a position to analyze the disruption properties of uniform crossover in the 
same manner as the analysis of n-point crossover in the preceding sections. We note that 
the notion of an even number of crossover points between the defining positions of 
hyperplane Hk corresponds to masks which have either all 0s or all Is on the defining 
positions of Hk. Hence, the corresponding conservative bound on the disruption of 
uniform crossover is given by: 

Pd{Hk)<\-PKevell(Hk) 

where 

Pk,even(Hk) = (P0)* + (l^o)* 

If Po = 0-5 for example, then 

Pk,even(ßk) = ("I") 

for all hyperplanes of order k. Notice that, unlike the traditional «-point crossover, there 
is no representational bias with uniform crossover in the sense that all hyperplanes of 
order k are equally disrupted regardless of how long or short their defining lengths are. 

As before, we can get a tighter estimate of Pd if we include non-disruptive "odd" 
crossovers. For uniform crossover this corresponds to those masks which are not either 
all 0s or all Is on the hyperplane defining positions, but are non-disruptive because the 
parents share common alleles on those particular positions. More formally, we have 

k-\ 

Pk,s(Hk) ~ Pk,even(Hk)+ X 
:   1 

(Po)1   (l-Po?-'   (Pea' + Peg       ~ V) 

where Peq is the probability of matching alleles, as before. Note that the last term in the 
expression is identical to the correction C defined earlier for the «-point crossover 
analysis. If the above is rewritten more concisely, PKs can be expressed in a form similar 
to that derived for the «-point analysis: 



Pk,s{Hk) = X (P0)' (l-Po)*"' (P, + P k~ T L eq -P    k) 1 eq  J 

Figure 10 illustrates the relationship between uniform crossover and «-point crossover 
for 3rd order hyperplanes. Note that, as expected, uniform crossover does not minimize 
disruption but, at the cost of higher disruption, removes any representational bias. This 
helps to explain why uniform crossover can yield performance improvements in some 
cases. Consider situations in which the critical low order hyperplanes happen to be 
widely separated in a particular representation. Uniform crossover significantly reduces 
the disruption pressure on these critical hyperplanes at the expense of more disruption on 
the adjacent (but non-critical) low order hyperplanes. However, in the reverse situations 
in which the representation happens to place critical positions close together, 1 and 2 
point crossover is more effective. 
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Figure 10. Disruption of Uniform Crossover 

6   Is Disruption Always Bad? 

So far, the analysis of crossover has focused on its potential for sampling disruption with 
the implication that disruption is bad. Sampling disruption is important for 
understanding the effects of crossover when populations are diverse (typically early in 
the evolutionary process). However, when a population becomes quite homogeneous, 
another factor becomes important: whether the offspring produced by crossover will be 
different than their parents in some way (thus generating a new sample) or just clones. 
This property of crossover has been dubbed "crossover productivity" and is easy to 
measure. Figure 11 illustrates how significantly the "productivity" of 2-point crossover 
can drop off as evolution proceeds. The horizontal axis indicates the number of 
generations the GA has run (i.e., we use a generational GA). The vertical axis indicates 
the number of crossovers, at each generation, that produced offspring different from their 
parents. Since Pc = .6, and the population size is 100, the maximum productivity is 60. 
The  problem   examined,   HC11,  is   a  boolean   satisfiability   problem   explained   in 



[Spears90]. The problem has 55 binary variables, and has one unique solution with a 
fitness of l.O.f 

Productivity 
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Figure 11. Productivity of 2-point & Uniform Crossover 

If we try to formally compute the probability that the offspring will be different than their 
parents, the computation is precisely the same as the previous disruption computations. 
To see this, consider two parents whose alleles differ on only 4 loci. In order for 
crossover to produce new offspring, some but not all of those alleles must be exchanged. 
The probability of this occurring is just Pd(H4). In other words, those operators that are 
more disruptive are also more likely to create new individuals from parents with nearly 
identical genetic material. 
This observation helps explain some of the other experimental results in which higher 
crossover rates performed better. Figure 12 is an example of one such result. Again, the 
horizontal axis represents generations. The vertical axis represents the best individual 
seen. Notice that 2-point crossover converges more quickly, but to a lower plateau than 
uniform crossover which converges more slowly to a better solution. 

This suggests two additional directions for research. First, note that it may be possible to 
have the best of both worlds by modifying 2-point crossover to be less likely to produce 
clones. This can be achieved in a brute force way by repeated calls to crossover until 
non-clones are produced, or in more sophisticated ways such as Booker's reduced 
surrogate approach [Booker85]. Figure 13 illustrates the effect of the brute force 
technique on one particular example. Notice that this change has little effect during the 
early generations when children are most likely to be different anyway. However, the 
increased "productivity" in the later stages slows the early convergence seen before. 

t All experimental results are averaged over at least 10 independent runs. 
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Figure 12. Productivity-related Performance of 2-point & Uniform Crossover 
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Figure 13. 2-point Crossover Augmented to Increase Productivity 

The second direction for future research is the obvious interaction of multi-point 
crossover and population size. Smaller population sizes tend to converge faster to levels 
of homogeneity which reduce crossover productivity. With larger population sizes the 
effects appear to be much less dramatic. This suggests a way to understand the role of 
multi-point crossover. With small populations, more disruptive crossover operators such 



as uniform or n-point (n » 2) may yield better results because they help overcome the 
limited information capacity of smaller populations and the tendency for more 
homogeneity. However, with larger populations, less disruptive crossover operators (2- 
point) are more likely to work better, as suggested by Holland's original analysis. 

7   Conclusions and Further Work 

The extensions to the analysis of «-point and uniform crossover presented in this paper 
provide additional insight into the role and effective use of these operators. At the same 
time, this analysis has suggested some directions for further research. The authors are 
currently involved in extending the results presented here to include the interacting 
effects of population size and crossover productivity. The view we are taking is that 
there is very little likelihood of finding globally correct answers to questions such as the 
choice of population size and crossover operators. Our goal is to understand these 
interactions well enough so that GAs can be designed to be self-selecting with respect to 
such decisions. 
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